Дополнительно Закрыть Назад Обновить Далее Показать меню

Генная терапия

Не подлежит сомнению, что радикальным методом лечения наследственных моногенных болезней должна стать генная терапия, однако, лишь в самые последние годы появились реальные предпосылки для ее практического применения. Значительно раньше появились эффективные методы консервативной терапии – они не изменяют генотип, но направлены на коррекцию метаболических или иммунологических дефектов, возникающих под влиянием мутантных генов. При раннем распознавании болезни с помощью этих методов удается моделирование нормального фенотипа путем целенаправленной диетотерапии, введения витаминов, гормонов, недостающих белков, микроэлементов.
Генная терапия – это метод введения фрагмента ДНК в клетки больного человека с целью замещения функции мутантного гена и лечения наследственных болезней.
Еще в конце 60-х годов выяснилось, что клетки животных и человека способны поглощать экзогенную ДНК, встраивать ее в свой геном, после чего проявляются экспрессия введенных генов, в частности, в виде синтеза отсутствовавших ранее белков и ферментов. Были разработаны методы доставки ДНК в клетки с помощью вирусов и других носителей.
Впервые попытка генной терапии в клинике была предпринята М.Клайном в 1983 году., когда им было осуществлено введения нормального бета-глобинового гена больным бета-талассемией. Позднее была разработана методика генной терапии наследственной недостаточности аденозин-деаминазы (тяжелый иммунодефицит): нормальный ген был введен в клетки костного мозга больного и после их ретрансплантации восстановилась активность фермента, состояние больного улучшилось. Проведены клинические эксперименты по генотерапии рака. В лейкоциты больных злокачественной меланомой и поздними стадиями рака были введены гены, маркирующие злокачественные клетки (чтобы их могла узнавать имунная система). У половины больных размеры опухолей уменьшились в два раза и более.
В настоящее время насчитывается более 40 заболеваний, при которых испытывается генная терапия – от редких форм (недостаточность аденозин-деманиазы) до распространенных, таких как рак, болезни сердечно-сосудистой системы и иммунодефициты. Весьма важно, что фрагменты ДНК и соответствующие гены были введены в клетки-мишени, которые были бы способны к последующему делению (клетки печени, стволовые клетки костного мозга и т.п.).
Самая сложная проблема – перенос фрагмента ДНК (гена) в клетку. В большинстве случаев для этих целей используются генетически модифицированные вирусы или вирусные векторы, и чаще всего мышиные ретровирусы. Они способны инфицировать любую клетку и вместе с желаемым фрагментом ДНК легко включаются в геном клетки-хозяина ДНК. Для того, чтобы получить ретровирусы-векторы, из измененных вирусов с помощью генно-инженерных методов удаляются нуклеотиды, ответственные за их размножение, но введенный с вирусом-вектором ген передается дочерним клеткам при клеточном делении. Однако эти векторы не годятся для введения ДНК-фрагментов в неделящиеся клетки человека, например, в нейроны. Они мало пригодны для переноса генов в клетки, отличающиеся низкой митотической активностью, в клетки эпителия дыхательных путей. Эти обстоятельства обусловили поиск других вирусных векторов, среди которых внимание привлекли аденовирусы. Из них также удаляются нуклеотиды, ответственные за репликацию. Аденовирусы могут переносить ДНК в неделящиеся клетки, чем отличаются от ретровирусов. Но в этом случае переносимая аденовирусом ДНК не встраивается в геном клетки хозяина, она остается вне хромосом, хотя и проявляет генную активность. В силу эписомальной локализации она не передается дочерним клеткам. Но с другой стороны, аденовирусные векторы позволяют вводить гены в клетки нервной системы и эпителий дыхательных путей.
Наряду с биологическими применяют физико-химические методы введения экзогенной ДНК в клетки хозяина. Для таких целей используется конъюганты ДНК с трансферрином или асиалогликопротеином, для которых на многих клетках имеются рецепторы (лиганд-рецепторный принцип). После связывания с рецептором конъюганты ДНК поглощаются клеткой, хотя вероятность встраивания введенной ДНК в геном хозяина очень невелика. Все же такой ген может временно выполнять свои функции.
Разработана технология микроинъекций ДНК в клетки (миоциты), а также введение генов с помощью липосом.
Методы генной терапии постепенно входят в арсенал современных эффективных методов лечения наследственных заболеваний человека, что особенно важно в тех случаях, когда других возможностей просто не существует.
Семейная гиперхолестеринемия – еще одно заболевание – кандидат для генной терапии. Как известно, это заболевание представляет высокий риск для жизни молодых людей, т.к. отличается ранним инфарктом миокарда и ранним атеросклерозом. Оно связано с отсутствием на мембранах клеток рецепторов для липопротеинов низкой плотности, что обуславливает очень высокий уровень холестерина в крови. Так как рецепторы отсутствуют на клетках печени, то пока для введения генов прибегают к частичной гепатоэктомии. С помощью ретровирусного вектора в клетки печени вводится ген рецептора липопротеинов низкой плотности, после чего гепатоциты инъецируются в полую вену. В результате содержание холестерина в крови снижается на 35-50%. Конечно, пока данная технология слишком сложна, чтобы получить широкое практическое применение.
Наследственный дефицит гормона роста, проявляющийся выраженной низкорослостью также может быть устранен с помощью генной терапии. Ген гормона роста удалось ввести в миоциты, которые начинали продуцировать этот гормон. В ближайшее время будут проведены клинические испытания данного метода.
Ведутся интенсивные разработки методов генной терапии рака. Одна из возможностей состоит в том, чтобы ввести в опухолевые клетки гены, продуцирующие такие белки, которые позволяют иммунной системе организма распознавать и уничтожать эти клетки (например, ген интерферона). Другой путь заключается во введении в опухолевые клетки вирусных генов, которые позволяют использовать с лечебными целями противовирусные препараты (например, ганцикловир при введении гена тимидиин-киназы вируса герпеса). Еще один путь – введение в клетки антионкогенов (генов-супрессоров опухолевого роста). Однако, все эти методы пока находятся на стадии доклинических испытаний.
Уже в ближайшем будущем генная терапия займет ведущее место в лечении многих болезней, считавшихся ранее неизлечимыми.
Методы трансплантации тканей также могут быть отнесены к категории генной терапии, в частности, трансплантация костного мозга. Гены вводимых стволовых клеток могут активизировать дифференцировку многих клеточных линий – лимфоцитов, моноцитов, полинуклеаров, этитробластов. Это позволяет применять данный метод при лечении некоторых первичных иммунодефицитов гемоглобинопатий, болезни Гоше.
Пересадка гепатоцитов открывает другую возможность лечения фенилкетонурии, гиперхолестеринемии, нодостаточности альфа-I-антитрипсина. Пересадка клеток островкового аппарата поджелудочной железы предложена для лечения ювенильной формы сахарного диабета.
Сочетание возможностей генетики и клинической педиатрии позволит уже в недалеком будущем решать сложнейшие вопросы лечения и профилактики наследственных моногенных болезней. Современная медицинская и клиническая генетика представляет собой ярчайших пример единения науки и практики. Исследования, еще недавно представляющиеся сугубо теоретическими, в считанные годы получают реальный практический выход на благо здоровья настоящего и будущих поколений.

Мышь
Мышь, получавшая эндостатин, через 3 дня после заражения
Мышь из контрольной группы, через 3 дня после заражения
Мышь, получавшая эндостатин, через 11 дней после заражения
Мышь из контрольной группы, через 11 дней после заражения

Легкие мышей через 3 дня после заражения их раковыми клетками:
1 - мышь, получавшая эндостатин; 2 - мышь из контрольной группы.
Через 11 дней после заражения:
3 - мышь, получавшая эндостатин; 4 - мышь из контрольной группы (не получившая эндостатина).

Вверх Далее